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1 INTRODUCTION 
Surveys of computer science and engineering instructors have indicated that two of the common 
reasons they do not adopt research-based instruction strategies are preparation time and lack of 
materials [1], [2]. This lack of materials to support research-based instruction was evident in 
Computer Architecture & Organization (AR). In this SIGCSE Special Project, we proposed to 
create and disseminate new activities for AR. The proposed outcomes of the project were: 
 
• Eight new, piloted and revised activities for AR 
• Expansion of the scope and number of activities to support research-based instruction 

available to AR instructors by sharing online 
 
We met these outcomes, having written ten activities, piloting six of them during three 

semesters and the other four during one semester. The activities are publicly available at 
https://bmyerz.github.io/pogil-for-computer-organization/. 

2 THE ACTIVITIES 
We based our activities on an instruction strategy called Process-Oriented Guided Inquiry 
Learning (POGIL). POGIL is built upon cooperative learning and constructivism. A POGIL 
activity consists of one or more trips through a learning cycle—a procedure that follows a theory 
of cognition [3]—of exploration, concept invention, and application. We define each phase of the 
learning cycle in Table 1. And, for each of these phases we list examples from Procedure Calls 
and Addressable Memories, two of our activities. 

To compose a new activity, we first listed its major learning objectives. From these we worked 
backward [4], determining application questions, identifying the new concepts required, 
identifying a model whose exploration would reveal that concept, and identifying questions that 
guide exploration of the model. Table 2 lists the ten activities, along with their main learning 
objectives. The learning objectives are intended to assist instructors in deciding whether the 
activity might fit into their course. 

We piloted each activity in up to three semesters of the Computer Organization course at the 
University of Iowa. Dr. Myers taught the course in student-centered active learning TILE 
(Transform, Interact, Learn, Engage) classrooms [5]. We worked with 33 students in Summer 
2017, 68 students in Fall 2017, and 51 students in Spring 2018. Students were primarily third and 
fourth year computer science majors. Table 2 lists the semesters during which each activity was 
piloted. 

Piloting revealed two main ways to revise our activities. First, we often needed to clarify or 
decompose the guiding questions in the exploration phase of an activity. These questions guide 
students to construct new knowledge—a demanding task for students. Therefore, good activity 
design requires iteration to find the balance of challenge and frustration. An example of this type 
of revision is shown in Figure 1, which illustrates the addition of a comprehension question to 
reduce frustration. Second, we recognized the benefit of distinguishing (using asterisks) divergent 
questions. These open-ended questions, such as “If pipelining reduces the longest delay in a 
circuit, then why don’t we use an infinite number of pipeline stages?”, ask the student to connect 
new concepts to a broader context. The instructor can make the divergent questions optional for 
slower teams to help synchronize the class. 



 

Table 1. Phases of the learning cycle and how each applies to AR. 

Phase of 
learning 
cycle 

Definition of phase Examples in AR activities 

Exploration Students answer comprehension and about a 
model. A model can be any form of 
information, such as a plot, table, flowchart, 
game, code, or circuit. The questions are 
convergent, that is, they lead toward a specific 
conclusion. 

Procedure calls: The model is a series 
of proposed code snippets for 
implementing a multiply-by-2 
procedure call in assembly. Students 
answer questions about the limitations 
of each proposal. 
Addressable memories: The model is a 
digital circuit made from two registers 
and inputs that say which register to 
write to. Students answer questions 
about how the circuit behaves under 
certain inputs. 
 

Concept 
invention 

Students recognize patterns or synthesize 
information in the model. The activity assigns 
the new concept a name. 

Procedure calls: Jumping to an address 
stored in a register is called an indirect 
jump. Specific registers are used as 
argument registers and return value 
registers. 
Addressable memories: The circuit 
that chooses which register to write to is 
called a decoder, and the overall circuit 
is a writable memory. Its parameters are 
width, the size of an entry, and depth, 
the number of entries. 

Application Students apply the new concept to other 
problems and also answer divergent questions 
to connect the ideas to the broader context. 

Procedure calls: Presented with new 
procedures written in assembly, the 
students interpret the code. Eventually, 
students write assembly code for 
procedures themselves. 
Addressable memories: The students 
design writable memories with different 
widths and lengths. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 2. The activities written and piloted. Summer 2017 (su17), Fall 2017 (fa17), Spring 2018 (sp18). 

Activity title Learning objectives Pilots  

Bits and 
numbers 

• Translate integers and fixed-point numbers between bases 
• Express positive and negative integers in two's complement 
• Identify the largest and smallest integers representable using N bits 

su17, fa17, sp18 

Memory 
organization 
of programs 

• Describe the purpose of data segment, text segment, stack, and 
heap memory 

• Draw a diagram of memory contents for an executing program 
• Translate object-oriented code to assembly language 

su17, fa17, sp18 

Stored 
programs 

• Discuss the correspondence between assembly language 
instructions and binary machine code 

• Read the assembly language/machine code documentation 
• Translate arithmetic and load/store instructions between assembly 

language and machine code 
• Translate labels to addresses for branch and jump instructions 

su17, fa17, sp18 

Procedure 
calls 

• Explain the importance of indirect jumps, argument registers, and 
return registers in procedure calls 

• Use procedure calling convention 
• Trace a recursive procedure call using memory diagrams 
• Write assembly code defining and calling a procedure 

sp18 

Combinational 
logic 

• Convert between a truth table and Boolean equation 
• Write the truth table for a circuit using a switch model 
• Explain how a circuit-controlled switch is necessary for 

composability 

sp18 

Adders and 
delay 

• Use truth tables to build arithmetic circuits 
• Explain the need for procedural reasoning in design of larger 

circuits like adders 
• Relate delay in RC circuits to a simple model for delay 
• Apply the simple model for delay to a combinational circuit 

sp18 

Adders, 
shifters, 
multipliers 

• Compare the delay of various implementations of arithmetic 
circuits 

• Build variable bit shifters using various approaches 
• Build a multiplier from shifters and adders 

su17, fa17, sp18 

Sequential 
logic 

• Identify properties of a clock signal 
• Write the waveform for a sequential circuit 
• Explain why sequential components are required in a feedback 

loop 
• Design a basic sequential circuit from a description of behavior 

sp18 

Addressable 
memory and 
the add 
instruction 

• Build an addressable RAM from registers or smaller memories 
with fewer ports 

• Build a simple datapath that can execute a single instruction and 
program it 

• Modify the datapath to support a second instruction and program it 

su17, fa17, sp18 

Engineering 
digital 
systems 

• Calculate the delay of the critical path in a synchronous circuit, 
and use it to determine minimum clock period and throughput 

• Plot and interpret a Pareto optimal curve of delay vs area 
• Describe the advantages and limitations of pipelining 

su17, fa17, sp18 

 
 
 
 
 
 

 



 

EXCERPT 
 
2. Our writeable memory shown below is missing logic regarding the WriteAddress. 

 
 

a) Give the Boolean equation for the Enable input of RegisterA. 
 
 

b) Give the Boolean equation for the Enable input of RegisterB. 
 
 

c) Now, complete the above circuit diagram by converting those two Boolean equations to 
gates (ignore right side of registers). 

 
Suppose we built a writeable memory with W=8   4  , L=4, with registers named R0-R3. 
 
3.  How many bits are needed for 

a) the WriteAddress input? 
b) the WriteData input? 

 
4.   3.  To design the writeable memory, answer the following. 

a) Give the Boolean equation for the Enable input of register R0. 
 

b) Give the Boolean equation for the Enable input of register R1. 
 

c) Given the Boolean equation for the Enable input of register R2. 
 

d) Given the Boolean equation for the Enable input of register R3. 
 
 

Figure 1. Example of a revision (red strikethrough is removal, green is addition) that was the outcome of 
piloting with students. This excerpt is from an exploration phase of Addressable memory and the add 

instruction. Here, the students are constructing the implementation of writeable memory. In the first pilot we 
found students struggled on #3 (the new #4). It turned out it was helpful to precede it with a question (the 

new #3) re-assessing their comprehension of what the memory parameters W and L meant. 

 
 
 
 
 
 



 
3 DISSEMINATION 
We made the six mature activities (piloted multiple times) publicly available. The activities can 
be accessed at https://bmyerz.github.io/pogil-for-computer-organization/. 

We presented a poster titled POGIL Activities for Computer Architecture & Organization at 
SIGCSE 2018 [6]. The poster attracted constant foot traffic from attendees who teach computer 
organization, computer architecture, and digital design. 

We presented a talk by that title to two different audiences. The first was at the Iowa 
Undergraduate Computer Science Consortium (IUCSC), an annual meeting of computer science 
instructors from regional colleges. The second was at the STEM Collaborative Symposium, a 
meeting of K-20 STEM educators concerned with collaboration across grade levels, across 
disciplines, and between research and practice. The fact that POGIL has been adopted widely 
made the talk appropriate for that venue. 

4 FINANCES 
Spending followed the proposed budget of $5000 to pay for activity writing and revision. The 
project required one person-month of effort: 2 weeks of Summer pay were covered by the grant 
and the remaining 2 weeks were covered by the investigator’s scholarship time during the 
academic year. 

5 RESOURCES FOR AUTHORSHIP 
Members of the SIGCSE community who are interested in writing their own activities have 
several resources. 

• cspogil.org [7] hosts over 200 examples of POGIL activities for CS. 
• The POGIL project provides resources for authors [8]. 
• Kussmaul [9] enumerates patterns of POGIL activities, with examples drawn from CS. 
• The POGIL Writers’ Retreat is a multi-day workshop for authors to get peer and expert 

feedback [10]. 
• POGIL 3-day Regional workshops include an activity writing track [11]. 

6 FUTURE CONTRIBUTIONS 
We plan to continue piloting, revising, writing, and sharing activities. To this end, Dr. Myers will 
attend the 2018 POGIL Writers’ Retreat. There he will write and improve POGIL activities with 
expert mentors and peers. In the upcoming academic year, we will pilot the existing and new 
activities with up to another 240 students. We will continue to share resulting improvements and 
additions in the online repository.  

7 CONCLUSION 
We thank the SIGCSE Board for their generous support of this project. It has produced principled 
activities supporting instruction in Computer Architecture & Organization. Just as the public 
repository cspogil.org inspired this project, we hope our contribution inspires other instructors to 
write and share materials. A growing number of high-quality materials may encourage more 
instructors to adopt research-based instruction strategies like POGIL. 
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