
Active Learning Materials for Computer Architecture & Organization: Final Report

BRANDON MYERS, University of Iowa

1 INTRODUCTION
Surveys of computer science and engineering instructors have indicated that two of the common
reasons they do not adopt research-based instruction strategies are preparation time and lack of
materials [1], [2]. This lack of materials to support research-based instruction was evident in
Computer Architecture & Organization (AR). In this SIGCSE Special Project, we proposed to
create and disseminate new activities for AR. The proposed outcomes of the project were:

• Eight new, piloted and revised activities for AR
• Expansion of the scope and number of activities to support research-based instruction

available to AR instructors by sharing online

We met these outcomes, having written ten activities, piloting six of them during three

semesters and the other four during one semester. The activities are publicly available at
https://bmyerz.github.io/pogil-for-computer-organization/.

2 THE ACTIVITIES
We based our activities on an instruction strategy called Process-Oriented Guided Inquiry
Learning (POGIL). POGIL is built upon cooperative learning and constructivism. A POGIL
activity consists of one or more trips through a learning cycle—a procedure that follows a theory
of cognition [3]—of exploration, concept invention, and application. We define each phase of the
learning cycle in Table 1. And, for each of these phases we list examples from Procedure Calls
and Addressable Memories, two of our activities.

To compose a new activity, we first listed its major learning objectives. From these we worked
backward [4], determining application questions, identifying the new concepts required,
identifying a model whose exploration would reveal that concept, and identifying questions that
guide exploration of the model. Table 2 lists the ten activities, along with their main learning
objectives. The learning objectives are intended to assist instructors in deciding whether the
activity might fit into their course.

We piloted each activity in up to three semesters of the Computer Organization course at the
University of Iowa. Dr. Myers taught the course in student-centered active learning TILE
(Transform, Interact, Learn, Engage) classrooms [5]. We worked with 33 students in Summer
2017, 68 students in Fall 2017, and 51 students in Spring 2018. Students were primarily third and
fourth year computer science majors. Table 2 lists the semesters during which each activity was
piloted.

Piloting revealed two main ways to revise our activities. First, we often needed to clarify or
decompose the guiding questions in the exploration phase of an activity. These questions guide
students to construct new knowledge—a demanding task for students. Therefore, good activity
design requires iteration to find the balance of challenge and frustration. An example of this type
of revision is shown in Figure 1, which illustrates the addition of a comprehension question to
reduce frustration. Second, we recognized the benefit of distinguishing (using asterisks) divergent
questions. These open-ended questions, such as “If pipelining reduces the longest delay in a
circuit, then why don’t we use an infinite number of pipeline stages?”, ask the student to connect
new concepts to a broader context. The instructor can make the divergent questions optional for
slower teams to help synchronize the class.

Table 1. Phases of the learning cycle and how each applies to AR.

Phase of
learning
cycle

Definition of phase Examples in AR activities

Exploration Students answer comprehension and about a
model. A model can be any form of
information, such as a plot, table, flowchart,
game, code, or circuit. The questions are
convergent, that is, they lead toward a specific
conclusion.

Procedure calls: The model is a series
of proposed code snippets for
implementing a multiply-by-2
procedure call in assembly. Students
answer questions about the limitations
of each proposal.
Addressable memories: The model is a
digital circuit made from two registers
and inputs that say which register to
write to. Students answer questions
about how the circuit behaves under
certain inputs.

Concept
invention

Students recognize patterns or synthesize
information in the model. The activity assigns
the new concept a name.

Procedure calls: Jumping to an address
stored in a register is called an indirect
jump. Specific registers are used as
argument registers and return value
registers.
Addressable memories: The circuit
that chooses which register to write to is
called a decoder, and the overall circuit
is a writable memory. Its parameters are
width, the size of an entry, and depth,
the number of entries.

Application Students apply the new concept to other
problems and also answer divergent questions
to connect the ideas to the broader context.

Procedure calls: Presented with new
procedures written in assembly, the
students interpret the code. Eventually,
students write assembly code for
procedures themselves.
Addressable memories: The students
design writable memories with different
widths and lengths.

Table 2. The activities written and piloted. Summer 2017 (su17), Fall 2017 (fa17), Spring 2018 (sp18).

Activity title Learning objectives Pilots

Bits and
numbers

• Translate integers and fixed-point numbers between bases
• Express positive and negative integers in two's complement
• Identify the largest and smallest integers representable using N bits

su17, fa17, sp18

Memory
organization
of programs

• Describe the purpose of data segment, text segment, stack, and
heap memory

• Draw a diagram of memory contents for an executing program
• Translate object-oriented code to assembly language

su17, fa17, sp18

Stored
programs

• Discuss the correspondence between assembly language
instructions and binary machine code

• Read the assembly language/machine code documentation
• Translate arithmetic and load/store instructions between assembly

language and machine code
• Translate labels to addresses for branch and jump instructions

su17, fa17, sp18

Procedure
calls

• Explain the importance of indirect jumps, argument registers, and
return registers in procedure calls

• Use procedure calling convention
• Trace a recursive procedure call using memory diagrams
• Write assembly code defining and calling a procedure

sp18

Combinational
logic

• Convert between a truth table and Boolean equation
• Write the truth table for a circuit using a switch model
• Explain how a circuit-controlled switch is necessary for

composability

sp18

Adders and
delay

• Use truth tables to build arithmetic circuits
• Explain the need for procedural reasoning in design of larger

circuits like adders
• Relate delay in RC circuits to a simple model for delay
• Apply the simple model for delay to a combinational circuit

sp18

Adders,
shifters,
multipliers

• Compare the delay of various implementations of arithmetic
circuits

• Build variable bit shifters using various approaches
• Build a multiplier from shifters and adders

su17, fa17, sp18

Sequential
logic

• Identify properties of a clock signal
• Write the waveform for a sequential circuit
• Explain why sequential components are required in a feedback

loop
• Design a basic sequential circuit from a description of behavior

sp18

Addressable
memory and
the add
instruction

• Build an addressable RAM from registers or smaller memories
with fewer ports

• Build a simple datapath that can execute a single instruction and
program it

• Modify the datapath to support a second instruction and program it

su17, fa17, sp18

Engineering
digital
systems

• Calculate the delay of the critical path in a synchronous circuit,
and use it to determine minimum clock period and throughput

• Plot and interpret a Pareto optimal curve of delay vs area
• Describe the advantages and limitations of pipelining

su17, fa17, sp18

EXCERPT

2. Our writeable memory shown below is missing logic regarding the WriteAddress.

a) Give the Boolean equation for the Enable input of RegisterA.

b) Give the Boolean equation for the Enable input of RegisterB.

c) Now, complete the above circuit diagram by converting those two Boolean equations to
gates (ignore right side of registers).

Suppose we built a writeable memory with W=8 4 , L=4, with registers named R0-R3.

3. How many bits are needed for

a) the WriteAddress input?
b) the WriteData input?

4. 3. To design the writeable memory, answer the following.

a) Give the Boolean equation for the Enable input of register R0.

b) Give the Boolean equation for the Enable input of register R1.

c) Given the Boolean equation for the Enable input of register R2.

d) Given the Boolean equation for the Enable input of register R3.

Figure 1. Example of a revision (red strikethrough is removal, green is addition) that was the outcome of
piloting with students. This excerpt is from an exploration phase of Addressable memory and the add

instruction. Here, the students are constructing the implementation of writeable memory. In the first pilot we
found students struggled on #3 (the new #4). It turned out it was helpful to precede it with a question (the

new #3) re-assessing their comprehension of what the memory parameters W and L meant.

3 DISSEMINATION
We made the six mature activities (piloted multiple times) publicly available. The activities can
be accessed at https://bmyerz.github.io/pogil-for-computer-organization/.

We presented a poster titled POGIL Activities for Computer Architecture & Organization at
SIGCSE 2018 [6]. The poster attracted constant foot traffic from attendees who teach computer
organization, computer architecture, and digital design.

We presented a talk by that title to two different audiences. The first was at the Iowa
Undergraduate Computer Science Consortium (IUCSC), an annual meeting of computer science
instructors from regional colleges. The second was at the STEM Collaborative Symposium, a
meeting of K-20 STEM educators concerned with collaboration across grade levels, across
disciplines, and between research and practice. The fact that POGIL has been adopted widely
made the talk appropriate for that venue.

4 FINANCES
Spending followed the proposed budget of $5000 to pay for activity writing and revision. The
project required one person-month of effort: 2 weeks of Summer pay were covered by the grant
and the remaining 2 weeks were covered by the investigator’s scholarship time during the
academic year.

5 RESOURCES FOR AUTHORSHIP
Members of the SIGCSE community who are interested in writing their own activities have
several resources.

• cspogil.org [7] hosts over 200 examples of POGIL activities for CS.
• The POGIL project provides resources for authors [8].
• Kussmaul [9] enumerates patterns of POGIL activities, with examples drawn from CS.
• The POGIL Writers’ Retreat is a multi-day workshop for authors to get peer and expert

feedback [10].
• POGIL 3-day Regional workshops include an activity writing track [11].

6 FUTURE CONTRIBUTIONS
We plan to continue piloting, revising, writing, and sharing activities. To this end, Dr. Myers will
attend the 2018 POGIL Writers’ Retreat. There he will write and improve POGIL activities with
expert mentors and peers. In the upcoming academic year, we will pilot the existing and new
activities with up to another 240 students. We will continue to share resulting improvements and
additions in the online repository.

7 CONCLUSION
We thank the SIGCSE Board for their generous support of this project. It has produced principled
activities supporting instruction in Computer Architecture & Organization. Just as the public
repository cspogil.org inspired this project, we hope our contribution inspires other instructors to
write and share materials. A growing number of high-quality materials may encourage more
instructors to adopt research-based instruction strategies like POGIL.

REFERENCES

[1] J. E. Froyd, M. Borrego, S. Cutler, C. Henderson, and M. J. Prince, “Estimates of Use of

Research-Based Instructional Strategies in Core Electrical or Computer Engineering
Courses,” IEEE Trans. Educ., vol. 56, no. 4, pp. 393–399, Nov. 2013.

[2] H. H. Hu, B. Knaeble, and C. Mayfield, “Results from a Survey of Faculty Adoption of
Process Oriented Guided Inquiry Learning (POGIL) in Computer Science,” in
Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education, 2016, pp. 186–191.

[3] M. R. Abraham, “Inquiry and the learning cycle approach,” Chem. Guid. to Eff. Teach.,
vol. 1, pp. 41–52, 2005.

[4] L. D. Fink, A Self-Directed Guide to Designing Courses for Significant Learning. Jossey-
Bass, 2003.

[5] S. Ingram, B., Jesse, M., Fleagle, S., Florman, J., & Van Horne, “Transform, Interact,
Learn, Engage (TILE): Creating Learning Spaces that Transform Undergraduate
Education,” in Cases on Higher Education Spaces: Innovation, Collaboration, and
Technology, Hershey, PA: IGI Global, 2013, pp. 165–185.

[6] B. Myers, “POGIL Activities for Computer Organization and Architecture,” in
Proceedings of the 49th ACM Technical Symposium on Computer Science Education -
SIGCSE ’18, 2018, pp. 1073–1073.

[7] “CS-POGIL.” [Online]. Available: http://cspogil.org. [Accessed: 19-Jun-2018].
[8] “POGIL | Authoring Materials.” [Online]. Available: https://pogil.org/authoring-

materials. [Accessed: 19-Jun-2018].
[9] C. Kussmaul, “Patterns in Classroom Activities for Process Oriented Guided Inquiry

Learning (POGIL),” Conf. Pattern Lang. Programs, vol. 23, 2016.
[10] “The POGIL Project - 2018 POGIL Writers’ Retreat.” [Online]. Available:

https://events.pogil.org/event-2783495. [Accessed: 19-Jun-2018].
[11] “The POGIL Project - 2018 North Central Regional Workshop.” [Online]. Available:

https://events.pogil.org/event-2790302. [Accessed: 19-Jun-2018].

