Activity title	Learning objectives	Pilots
		17 6 17
Bits and	• Translate integers and fixed-point numbers between bases	sul /, fal /, spl8
numbers	• Express positive and negative integers in two's complement	
	• Identify the largest and smallest integers representable using N bits	17 6 17 10
Memory	• Describe the purpose of data segment, text segment, stack, and	sul7, fal7, spl8
organization	heap memory	
of programs	• Draw a diagram of memory contents for an executing program	
	Translate object-oriented code to assembly language	
Stored	• Discuss the correspondence between assembly language	sul7, fal7, spl8
programs	instructions and binary machine code	
	• Read the assembly language/machine code documentation	
	• Translate arithmetic and load/store instructions between assembly	
	language and machine code	
	• Translate labels to addresses for branch and jump instructions	
Procedure	• Explain the importance of indirect jumps, argument registers, and	sp18
calls	return registers in procedure calls	
	• Use procedure calling convention	
	• Trace a recursive procedure call using memory diagrams	
	 Write assembly code defining and calling a procedure 	
Combinational	• Convert between a truth table and Boolean equation	sp18
logic	• Write the truth table for a circuit using a switch model	
	 Explain how a circuit-controlled switch is necessary for 	
	composability	
Adders and	• Use truth tables to build arithmetic circuits	sp18
delay	• Explain the need for procedural reasoning in design of larger	
	circuits like adders	
	 Relate delay in RC circuits to a simple model for delay 	
	• Apply the simple model for delay to a combinational circuit	
Adders,	• Compare the delay of various implementations of arithmetic	su17, fa17, sp18
shifters,	circuits	
multipliers	 Build variable bit shifters using various approaches 	
	Build a multiplier from shifters and adders	
Sequential	 Identify properties of a clock signal 	sp18
logic	• Write the waveform for a sequential circuit	
	• Explain why sequential components are required in a feedback	
	loop	
	• Design a basic sequential circuit from a description of behavior	
Addressable	• Build an addressable RAM from registers or smaller memories	su17, fa17, sp18
memory and	with fewer ports	
the add	• Build a simple datapath that can execute a single instruction and	
instruction	program it	
	• Modify the datapath to support a second instruction and program it	
Engineering	• Calculate the delay of the critical path in a synchronous circuit,	su17, fa17, sp18
digital	and use it to determine minimum clock period and throughput	
systems	• Plot and interpret a Pareto optimal curve of delay vs area	
	• Describe the advantages and limitations of pipelining	

Table 2. The activities written and piloted. Summer 2017 (su17), Fall 2017 (fa17), Spring 2018 (sp18).